

Benefits of Inclusion of Geosynthetic Products in Reinforcement of Flexible Airfield Pavements Using ThreeDimensional Finite Element Modeling

Cesar Tirado, Cesar Carrasco, Gregory J. Norwood, Soheil Nazarian and Jeb S. Tingle

Objectives

- Determine benefits provided by geosynthetic reinforcement to flexible pavements
- 3D finite element model
 - Membrane and interface elements used for modeling geosynthetic material and its geomaterial interaction
- Evaluate most relevant properties

Traffic Benefit Ratio

- Assess effectiveness of a geosynthetic material in extending pavement service life
 - Defined as the ratio of the number of load cycles on a reinforced section to reach a defined failure state to the number of load cycles on an unreinforced section, with the same geometry and material constituents, to reach the same defined failure state

$$TBR = \frac{N_{\text{geogrid reinforced}}}{N_{\text{unreinforced}}}$$

Finite element model

- Use of available FEA software
 - 3-D FE code, suitable for flexible pavement analysis
 - Linear or nonlinear analysis
 - Nonlinear
 - Based on a modified linear elastic behavior
 - Endorses a universal relationship for both fine and coarse grained base and subgrade material (Uzan, 1985)

$$E = k_1 \sigma_c^{k_2} \sigma_d^{k_3}$$

- E : resilient modulus
- σ_c : confining pressure
- σ_d : deviatoric stress
- k_1, k_2, k_3 : coefficients statistically determined from results of laboratory resilient modulus tests.

3-D Finite Element Model

- Simulate both reinforced and unreinforced pavement sections
 - Mesh generated based on axle configuration
 - Four-node tetrahedral elements mesh

- It better reflects the complex behavior of the composite pavement system materials
- Preferred for the verification of the numerical model results with laboratory or field test
- Capable of simulating the rectangular footprint of the loaded wheel

Geosynthetic Materials

- Geomembrane modeled by a three-noded triangular membrane element
- Geogrid membrane element consist of three nodes
- Interface elements used for soil-geogrid interaction

Approach

- Include membrane and interface elements to model geogrid and soil-geogrid interaction, respectively.
- Geogrid membrane element (plane stress)
- Interface element linear elastic relation
 - Shear stiffness, k_s
 - Normal stiffness, k_n
 - Displacement components u, v, w.

Pavement distress models

- Rutting model
 - Progress of rutting with load repetition
 - ε_p : accumulated permanent strain
 - ε_r : resilient elastic strain
 - *N* : load cycle number
 - Material parameters
 - $-\alpha$: rate of increase in permanent deformation against the number of load applications

 $\varepsilon_p = \frac{\mu}{1 - \alpha} \cdot \varepsilon_r \cdot N^{1 - \alpha}$

- $-\mu$: permanent deformation
- Difference in deflections of the top and bottom of the layer
- Failure criterion: 1-in. rutting

Pavement distress models

- Fatigue cracking generated from tensile strains occurring at the bottom of the asphalt layers
- Fatigue model
 - N_f : the number of load applications to failure

$$N_f = k_1 \varepsilon_t^{-k_2} E_{ACP}^{-k_3}$$

• $k_1 = 0.0796$, $k_2 = 3.291$, and $k_3 = 0.854$ are regression parameters based on a 20% failure area criterion and standard mix asphalt

Parametric studies

- Variation in layer thickness & geosynthetic location
- Utilization of C-17 and F-15 aircrafts
- Consideration of both biaxial and triaxial geogrids
- Rutting failure criteria of 1 inch
- Effectiveness of geosynthetic determined via traffic benefit ratio (TBR)
- Linear vs. non-linear
- Impact of base and subgrade modulus

In this study, the TBR values were determined based on the rut depth of 1 in. (25 mm) since failure in rutting occurred long before failure was reached in fatigue cracking for any of the pavements analyzed in this study.

Details of Aircraft Gears

D	Aircraft type		
Parameter	C-17	F-15E Eagle	
Maximum takeoff weight	585,000 lb (2600 kN)	81,000 lb (360 kN)	
Landing gear designation and configuration	TRT - triple tandem tricycle	S – Single wheel	
Landing gear load	269,217 lb (1200 kN)	70,470 lb (313.5 kN)	
Strut spacing	93 in. (2.36 m)	-	
Tire spacing	42 in. (1.07 m)	-	
Dimensions	22.8 in. × 13.8 in. (580 mm × 350.5 mm)	13.4 in. × 8.1 in. (340 mm × 206 mm)	
Contact area	314 in ² (202,580 mm ²)	108.5 in ² (69,700 mm ²)	
Tire pressure	140 psi (965 kPa)	325 psi (2240 kPa)	

Geogrids

• Geogrids considered for parametric studies

		Properties		
Type	Parameter	Machine Direction (MD)	Cross Machine Direction (XMD)	
	Minimum rib thickness	1.27 mm (0.05 in.)	1.27 mm (0.05 in.)	
Biaxial	Tensile strength @2% strain	6.0 kN/m (410 lb/ft)	9.0 kN/m (620 lb/ft)	
	Aperture stability	650 N-mm/deg (5.7 lb-in./deg)		
Triaxial	Mid-rib depth	1.2 mm (0.05 in.)	1.2 mm (0.05 in.)	
	Mid-rib width	1.1 mm (0.04 in.)	1.1 mm (0.04 in.)	
	Tensile strength @0.5% strain	1.1 kN/m (77 lb/ft)		
	Aperture stability	300 N-mm/deg (2.6 lb-in./deg)		

Geogrids: Linear Elastic Properties

• Elastic modulus of the geogrid, E_g , is determined from the tensile stiffness, J_g , and the geogrid thickness, t, using

$$E_g = \frac{J_g}{t}$$

- where J_g can be estimated from the tensile strength, $T_{\varepsilon a}$, at a certain level of axial strain, ε_a , from
- and the geogrid shear modulus, $G^{(kPa)}$, is related to the measured aperture stability modulus, ASM (N-mm/degree) of the geosynthetics by

$$J_g = \frac{T_{\varepsilon_a}}{\varepsilon_a}$$

$$G = 7ASM$$

Geosynthetic tensile properties

Parameter	Geosynthetic		
1 at afficiet	Biaxial	Triaxial	
Modulus in machine direction, E_m	34 ksi (236 MPa)	26 ksi (177 MPa)	
Modulus in cross machine direction, E_{xm}	52 ksi (356 MPa)	26 ksi (177 MPa)	
Poisson's ratio in cross-machine — machine direction, v_{xm-m}	0.25	0.25	
Geogrid shear modulus in cross-machine — machine plane, G_{xm-m}	660 psi (4550 kPa)	305 psi (2100 kPa)	

Soil-Geogrid Interface Shear Stiffness k_s

- Traffic Benefit Ratio (TBR)
 - 3-in. asphalt
 - 10-in. base
 - Varying k_s
- TBR is very sensitive to k_s when geogrid is placed at the middepth of the base
- Geogrids not effective in mitigating rutting for C-17

Geotextiles vs. Geogrids

- Aperture size
 - Interlocking of base course aggregates
 - Geotextiles lack this feature
 - Prevent mixing of subgrade soil and granular base material
- Geogrids provide greater shear stiffness
- No benefit of geotextile materials

Туре	Parameter	Properties		
		Machine Direction (MD)	Cross Machine Direction (XMD)	
Geotextile: Amoco 2006	Tensile strength @2% strain	4.25 kN/m (290 lb/ft) 13.6 kN/m (930 lb/ft)		
	Aperture stability		None	

Biaxial vs. Triaxial (F-15 Aircraft)

- F-15 Aircraft
- Traffic Benefit Ratio
 (TBR)
 - 3-in. asphalt
 - Varying base thickness
- Weaker properties of triaxial geogrid

Biaxial vs. Triaxial (C-17 Aircraft)

- C-17 Aircraft
- Traffic Benefit Ratio (TBR)
 - 3-in. asphalt
 - Varying base thickness
- No clear benefit
 when heavy loads
 with large contact
 areas are applied to
 the pavement.

Linear Elastic vs. Nonlinear Modeling of Base and Subgrade

- Biaxial geogrid
- F-15 Aircraft
- Traffic Benefit Ratio (TBR)
 - 3-in. asphalt
 - Varying base thickness
- Similar pattern for C-17
- TBR decreased with respect to linear analyses

Layer	Nonlinear Parameters			
	k_1	k_2	k_3	
Base	30,000 psi (207 MPa)	0.25	-0.25	
Subgrade	5,000 psi (36 MPa)	0	-0.5	

Impact of Base Thickness

- Traffic Benefit Ratio (TBR)
 - 3-in. asphalt
 - Varying base thickness
- Greater benefit observed when
 - Geogrid placed at bottom of base
 - F-15 aircraft
- Less benefit in thicker bases

- Use of geogrid in the middle of the base transfers rutting from the base to the subgrade
- The proportion of rutting per layer remains the same when the geogrid is placed at the bottom of the base when compared to an unreinforced pavement.

Base Thickness (in.)

Amount of accumulated rutting in different layers at the number of passes to failure for unreinforced cases

Impact of HMA Thickness

- Traffic Benefit Ratio
 (TBR)
 - Varying HMA thickness
 - 10-in. base
- Generally, no significant impact

Impact of Base Modulus

- Traffic Benefit Ratio (TBR)
 - 3-in. asphalt
 - 10-in. base
- Effectiveness of geogrid diminishes as the base layer becomes stiffer
- Greater benefit observed when
 - Geogrid placed at bottom of base
 - F-15 aircraft

Impact of Subgrade Modulus

- Traffic Benefit Ratio (TBR)
 - 3-in. asphalt
 - 10-in. base
- Greater benefit observed when
 - F-15 aircraft
 - Geogrid placed at bottom of base for weaker bases
 - Geogrid placed in the middle of the base layer for stiffer bases

Summary and Recommendations

- TBR is moderately sensitive to HMA thickness
 - More significant for thinner HMA layers
- TBR is sensitive to thickness and modulus of the base mainly when reinforcement is below the base and an F-15 is considered
 - Benefit diminishes for thicker bases and is accentuated for less stiff bases.
- Effectiveness of geogrid reinforcement is significantly impacted by subgrade modulus
 - As the subgrade becomes stiffer, the percentage of rutting in the base layer increases.

Summary and Recommendations

- Benefit is more pronounced when an F-15 aircraft is considered moderate
- A significant component to the effectiveness of the geogrid is the type of the geogrid used as quantified by the soil/aggregate-geogrid interface shear stiffness
 - Particularly when the geogrid reinforcement is placed in the middle of the base.
 - Based on information available, the triaxial geogrid provides no added benefit when compared to the biaxial geogrid
 - This conclusion may change when more concrete information or standard test procedure become available about the interface shear stiffness.

Summary of Impact of Pavement Properties on TBR

		Aircraft Type			
		F-:	15	C-	17
		Location of Geogrid			
Property		Middle	Bottom	Middle	Bottom
Geogrid					
НМА	Thickness				
Desc	Thickness				
Base	Modulus				
Subgrade	Modulus				
Soil/Aggregate- Geogrid Interface	Shear Stiffness				
Triaxial					
Base	Thickness				
Geotextile/Geomembrane					
Base	Thickness				

Not significant: $0.95 \le TBR \le 1.05$

Moderately significant: $0.90 \le TBR < 0.95$ and $1.05 < TBR \le 1.10$

Significant: TBR < 0.90 and TBR > 1.10

